简答题

(投票博弈)假定有三个参与人(1、2和3)要在三个项目(A、B和C)中选中一个。三人同时投票,不允许弃权,因此,每个参与人的战略空间Si=(A,B,C)。得票最多的项目被选中,如果没有任何项目得到多数票,项目A被选中。参与人的支付函数如下:U1(A)=U2(B)=U3(C)=2U1(B)=U2(C)=U3(A)=1U1(C)=U2(A)=U3(B)=0求解以上博弈的所有纯战略纳什均衡。

正确答案

首先,将上述博弈过程转换为战略式博弈矩阵。

1 选择 A 策略。如果参与人 2 同样选择 A 策略,那么参与人 3 选择 ABC 策略是无差异的。

答案解析

相似试题
  • 在囚徒困境中,“针锋相对”战略定义为:1、每个参与人开始选择“抵赖”;2、在t阶段选择对方在t-1的行动。假定贴现因子δ=1,证明以上战略不是子博弈精炼纳什均衡。

    简答题查看答案

  • 考虑如下贝叶斯博弈: (1)自然决定支付矩阵(a)或(b),概率分别为u和1-u; (2)参与人1知道自然的选择,即知道自然选择支付矩阵(a)或(b),但是参与人2不知道自然的选择; (3)参与人1和参与人2同时行动。给出这个博弈的扩展式表述并求纯战略贝叶斯均衡。

    简答题查看答案

  • 有n个完全相同且每个企业的生产函数为cq,市场需求Q=a-p,假定博弈重复无穷次,每次每个企业的定价和产量都能被下一阶段所有企业观察到,每个企业都使用“触发战略”。假定每个企业的贴现因子都相同,问在以下条件下,垄断价格作为子博弈精炼纳什均衡结果出现的最低贴现因子:(1)如果每个阶段企业之间进行古诺博弈,则最低贴现因子。(2)如果每个阶段企业之间进行伯川德博弈,则最低贴现因子。

    简答题查看答案

  • 考虑如下扰动的性别战略博弈,其中ti服从[0,1]的均匀分布,t1和t1是独立的,ti是参与人i的私人信息。 (1)求出以上博弈所有纯战略贝叶斯均衡 (2)证明当ε→0时,以上贝叶斯均衡和完全信息的混合战略纳什均衡相同

    简答题查看答案

  • 考虑一个承诺博弈,存在两个参与人。参与人2首先行动,选择行动动a2,a2的取值范围是{0,1}

    简答题查看答案

  • 考虑一个承诺博弈,存在两个参与人。参与人2首先行动,选择行动动a2,a2的取值范围是{0,1}

    简答题查看答案

  • 可口可乐与百事可乐(参与者)的价格决策:双方都可以保持价格不变或者提高价格(策略);博弈的目标和得失情况体现为利润的多少(收益); 利润的大小取决于双方的策略组合(收益函数); 博弈有四种策略组合,其结局是: (1)双方都不涨价,各得利润10单位;  (2)可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30; (3)可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30;  (4)双方都涨价,可口可乐利润140,百事可乐利润35。

    简答题查看答案

  • 可口可乐与百事可乐(参与者)的价格决策:双方都可以保持价格不变或者提高价格(策略);博弈的目标和得失情况体现为利润的多少(收益); 利润的大小取决于双方的策略组合(收益函数); 博弈有四种策略组合,其结局是: (1)双方都不涨价,各得利润10单位;  (2)可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30; (3)可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30;  (4)双方都涨价,可口可乐利润140,百事可乐利润35。

    简答题查看答案

  • 考虑一个承诺博弈,存在两个参与人。参与人2首先行动,选择行动动a2,a2的取值范围是{0,1}

    简答题查看答案