单选题

均质圆环的质量为m,半径为R,圆环绕O轴的摆动规律为φ=ωt,ω为常数。图4-74所示瞬时圆环对转轴O的动量矩为()。

AmR2ω

B2mR2ω

C3mR2ω

正确答案

来源:www.examk.com

答案解析

相似试题
  • 半径为R、质量为m的均质圆盘绕偏心轴O转动,偏心距e=R/2,图示瞬时转动角速度为ω,角加速度为ε,则该圆盘的惯性力系向O点简化的主矢量R1和主矩的大小为()。

    单选题查看答案

  • 如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。

    单选题查看答案

  • 均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。

    单选题查看答案

  • 如图所示,均质杆AB,质量为M,长为l,A端连接一质量为m的小球,并一起以角速度ω绕O轴转动,则此系统对O轴的动量矩和动能T为()。

    单选题查看答案

  • 均质细直杆AB长为ι,质量为m,以匀角速度ω绕O轴转动,如图4-69所示,则AB杆的动能为()。

    单选题查看答案

  • ]如图所示,均质圆柱A、B重均为P,半径均为r,绳子一端绕在绕O轴转动的A圆柱上,另一端绕在B圆柱上。若不计摩擦,则B落下时其质心C的加速度aC为()。

    单选题查看答案

  • 半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为ν、加速度为a,则该轮的动能为()。

    单选题查看答案

  • 如图所示,弹簧一端固定于A点,A是半径为R的铅直大圆环的最高点,弹簧另一端连接一质量为m的小圆环M,M可沿固定大圆环滑动。M初位置在M0点,而AM0=R=弹簧原长。当M从M0不受摩擦、无初速度地滑至大环最低点B,此时欲使M对大环的压力等于零,则该弹簧的弹簧常数K应为()。

    单选题查看答案

  • 图示均质轮和均质杆,质量均为m;轮子半径均为R,杆长均为l;轮和杆均以角速度ω转动,其中图B中,轮在直线轨道上作纯滚动,则它们的动量大小按图次序为()。

    单选题查看答案