已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1。 (1)求椭圆C的标准方程; (2)若直线Z:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。
简答题查看答案
已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点D,从每条曲线上取两个点,将其坐标记录于下表中: (1)求C1、C2的标准方程: (2)请问是否存在直线L满足条件:①过C2的焦点F;②与C1交不同两点M、N,且满足若存在,求出直线L的方程;若不存在,说明理由。
简答题查看答案
设坐标原点为O,抛物线y2:2x与过焦点的直线交于A、B两点,则()。
单选题查看答案
半圆形闸门半径为R,将其垂直放入水中,且直径与水面齐,设水密度ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力p为()。
单选题查看答案
设f(x),g(x)在[a,b]上连续,且满足
简答题查看答案
设函数f(x0)在x处可导,则(),
单选题查看答案
抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()。
单选题查看答案
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f′(x)≥0,g′(x)≥0。证明:对任何a∈[O,1],有
简答题查看答案
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系。已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上。 (1)求α的值及直线ι的直角坐标方程: (2)圆c的参数方程为,试判断直线l与圆C的位置关系。
简答题查看答案