简答题

什么是聚类?简单描述如下的聚类方法:划分方法,层次方法,基于密度的方法,基于模型的方法。为每类方法给出例子。

正确答案

聚类是将数据划分为相似对象组的过程,使得同一组中对象相似度最大而不同组中对象相似度最小。主要有以下几种类型方法:
(1)划分方法
给定一个有N个元组或者记录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K 使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。
(2)层次方法
这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据记录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。
代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。
(3)基于密度的方法
基于密度的方法与其它方法的一个根本*区别是:它不是基于各种各样的距离,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是:只要一个区域中的点的密度大过某个阈值,就把它加到与之相近的聚类中去。
代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。
(4)基于模型的方法
基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在假定就是:目标数据集是由一系列的概率分布所决定的。
基于模型的方法主要有两类:统计学方法和神经网络方法(SOM)。

答案解析

相似试题
  • 简述基于划分的聚类方法。划分的准则是什么?

    简答题查看答案

  • 什么是聚类分析?聚类分析的应用领域有哪些?

    简答题查看答案

  • 以下哪种聚类方法可以发现任意形状的聚类?()

    单选题查看答案

  • 一个好的聚类分析方法会产生高质量的聚类,具有两个特征:()和()

    填空题查看答案

  • K均值是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定。

    判断题查看答案

  • 基于网格的聚类方法的优点是:()

    填空题查看答案

  • 划分聚类方法对数据集进行聚类时包含什么要点?

    简答题查看答案

  • 在数据挖掘中,常用的聚类算法包括:()、()、()、基于网格的方法和基于模型的方法。

    填空题查看答案

  • 以下哪个聚类算法不是属于基于原型的聚类()。

    单选题查看答案