已知x=2是函数的一个极值点。(e=2.718…) (1)求实数a的值; (2)求函数f(x)在的最大值和最小值。
简答题查看答案
已知函数。 (1)当时,求函数f(x)在[-2,2]上的最大值、最小值; (2)令,若g(x)在上单调递增,求实数a的取值范围。
简答题查看答案
已知函数f(x)=x-alnx(a∈R) (1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值。
简答题查看答案
已知平面向量,若存在不同时为零的实数k和t,使。 (1)试求函数关系式k=f(t); (2)求使f(t)>0的t的取值范围。
简答题查看答案
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1。 (1)求椭圆C的标准方程; (2)若直线Z:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。
简答题查看答案
已知f(x)是定义在(-1,1)的函数,并且满足下列条件:①对都有 成立;②当x∈(-1,0)时,f(x)>0。 请回答下列问题: (1)判断f(x)在(-1,1)上的奇偶性,并说明理由; (2)判断f(x)在(0,1)上的单调性,并说明理由。
简答题查看答案
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系。已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上。 (1)求α的值及直线ι的直角坐标方程: (2)圆c的参数方程为,试判断直线l与圆C的位置关系。
简答题查看答案
已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点D,从每条曲线上取两个点,将其坐标记录于下表中: (1)求C1、C2的标准方程: (2)请问是否存在直线L满足条件:①过C2的焦点F;②与C1交不同两点M、N,且满足若存在,求出直线L的方程;若不存在,说明理由。
简答题查看答案
已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()
单选题查看答案